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Abstract. It has been reported that traveling waves propagate periodically and stably in sub-excitable
systems driven by noise [Phys. Rev. Lett. 88, 138301 (2002)]. As a further investigation, here we observe
different types of traveling waves under different noises and periodic forces, using a simplified Oregona-
tor model. Depending on different noises and periodic forces, we have observed different types of wave
propagation (or their disappearance). Moreover, reversal phenomena are observed in this system based on
the numerical experiments in the one-dimensional space. We explain this as an effect of periodic forces.
Thus, we give qualitative explanations for how stable reversal phenomena appear, which seem to arise from
the mixing function of the periodic force and the noise. The output period and three velocities (normal,
positive and negative) of the travelling waves are defined and their relationship with the periodic forces,
along with the types of waves, are also studied in sub-excitable system under a fixed noise intensity.

PACS. 82.40.Ck Pattern formation in reactions with diffusion, flow and heat transfer – 05.40.Ca Noise –
47.54.-r Pattern selection; pattern formation – 83.60.Np Effects of electric and magnetic fields

1 Introduction

The effects of noise on nonlinear systems are the sub-
ject of intense experimental and theoretical investiga-
tions. Noise can induce transition [1,2], bifurcations [3],
and stochastic resonance [4–7]. Notably, in reference [7]
the synchronization of spatiotemporal patterns was ob-
served in an excitable medium via the numerical mod-
elling. Moreover noise can enhance propagation in arrays
of coupled bistable oscillators [8–11]. In an excitable sys-
tem, an external periodic forcing can dramatically change
its behavior. As reported previously phase locking, quasi-
periodicity, period doubling, and chaos were observed [12].
The temporal evolution of the concentration patterns
has been modeled by partial differential reaction-diffusion
equations. Such models include oscillatory, excitable or
bistable systems with either none, one or two linearly sta-
ble homogeneous states [13,14]. It is also well known that
in sub-excitable systems noise can also induce travelling
waves [15], drive avalanche behavior [16], and sustain pul-
sating patterns and global oscillations [17]. Sub-excitable
systems under noises and periodic forcing are able to send
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out travelling and spiral waves. The Belousov-Zhabotinsky
(BZ) reaction [18,19] is a popular symbol in the nonlinear
dynamical realm to study excitable and sub-excitable sys-
tems. It has been widely agreed that the noise and periodic
forcing play a very important role in wave propagation and
stability.

Recently, it was observed that noise can support wave
propagation in sub-excitable [15,17,20] systems due to a
noise-induced transition [21,22]. In the systems studied,
the media are static, and transport is governed by dif-
fusion [23]. However in many situations, the media are
not static but subject to a motion. For example, stirred
by a flow, or by periodic forcing, convective-like phenom-
ena were observed due to applied electric field in refer-
ence [24], which occurs especially in chemical reactions
in a fluid environment. In such cases, diffusive transport
usually dominates only at small spatial scales while mix-
ing due to the flow is much faster at large scale. In ref-
erences [25–27], the authors show that in an inhomoge-
neous self-sustained oscillatory media, an increasing rate
of mixing can lead to a transition to a global synchroniza-
tion of the whole media. Especially, reference [28] showed
that the interplay among excitability, noise, diffusion and
mixing can generate various pattern formation in a 2D
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FigzHugh-Nagumo (FHN) model subject to advection by
a chaotic flow. Here, we research the effect of noise and
periodic forcing on sub-excitable systems using the Oreg-
onator model in one dimension, which advances from the
BZ reaction. The reversal phenomenon is not observed in
any publication literatures the propagation of travelling
waves. It is found in this paper, which relates to a new
concept. In reference [30], Albanese refers to the reversal
concept in wave propagation concerning extraction of in-
formation about distant structural features from the mea-
surements of scattered waves, but it is irrelevant to the
excitable system.

In our paper, we define that general traveling waves
propagate forward in one constant direction and vice
versa. Under this definition, we find the reversal phenom-
ena in our numerical simulations. However in our simula-
tion we have discovered that after some time, the waves
change propagation direction and turn backward to travel
in the opposite direction. The traveling waves propagate
forward and backward alternately and periodically. That
is called the reversal phenomenon (see the supplementary
material on-line movie for this phenomenon, Movie-0 ).
In mathematical language, the definition of a “reversal
phenomenon” is that at time t, the spatial position of a
traveling wave front is at point x. After some time ∆t > 0,
the wave front reaches point x again with reversed direc-
tion. In fact, this phenomenon was observed in the FHN
model by numerical simulations [28]. In this article, our
focus is on the effect of periodic forcing and noise on the
propagation of traveling waves in sub-excitable systems.

2 Model

Most of the systems we are interested in reside in a d-dim-
ensional world. This means that our variables (fields or
concentrations) depend on time and space. In the present
paper, the starting deterministic model [20] is based on
partial differential equations, and when the randomness
is introduced we transform them into stochastic partial
differential equation. A representative example is the de-
terministic reaction diffusion equation,

∂φ(x, t)
∂t

= f(φ(x, t), µ) + D∇2φ(x, t), (1)

where φ(x, t) represent the density of a physical observ-
able, f(φ(x, t), µ) is a nonlinear function of the field φ
and µ denotes the relevant control parameter. The above
equation can be made more complicated when considering
vector fields, higher-order derivatives, or nonlocal opera-
tors. The effect of fluctuations is introduced through a
stochastic process or noise ξ(x, t) with well controlled sta-
tistical properties. As a result, we expect that the new
equation governing our system will have the generic form

∂φ(x, t)
∂t

= f(φ(x, t), µ) + D∇2φ(x, t) + g(φ)ξ(x, t). (2)

We take into account this standard example of stochastic
partial differential equation and the two-variable Oreg-
onator model [19,35] that is famous for its convenience

for studying study the properties of diffusion-reaction sys-
tems. Our modified model adds both noise and periodic
forces, which is,

∂u

∂t
=

1
ε
f(u, v) + Du∇2u + (Dsξ(t) + E(t))

∂u

∂x
, (3a)

∂v

∂t
= g(u, v) + Dv∇2v + (Dsξ(t) + E(t))

∂v

∂x
, (3b)

where f(u, v) = u(1−u)−fv u−q
u+q , and g(u, v) = u−v. ∇2

is the Laplacian operator in Cartesian coordinates. u and
v represent the concentration of HBrO2 and the catalyst
2Ce4+, respectively. Here, the external electric field can
be considered as a spatially uniform electric field, which
includes two parts: stochastic forcing, ξ(t) (we use the
notation of ξ(t) for irrelevant in space) and the periodic
force , E(t). Both of them depend on time t with the form
of Gaussian noise and with the periodic function respec-
tively. ξ(t) denotes Gaussian white noise with 〈ξ(t)〉 = 0
and 〈ξ(t)ξ(t′ )〉 = 2Dsδ(t− t′), a typical temporally varied
Gaussian white noise and here Ds is the intensity of noise.
E(t) is the periodic force, where the sine periodic force
is chosen, E(t) = F sin( 2π

Tin
t). F and Tin are the intensity

of the periodic forcing and the input period, respectively.
The effect of electric field is convective-like, as discussed in
reference [24]. Du and Dv are the dimensionless diffusion
coefficients of u and v, Du = 1.0, Dv = 0.6 [31].

The dynamical system (3) is simulated in one-
dimensional space by Euler-Maruyama Method [32] with
zero flux boundary conditions on a space length of 500
elements. The space step is ∆x = 0.15 space unit and
the time step is ∆t = 10−3 time unit. These parame-
ters are chosen to make the simulation process relatively
stable and the information of wave propagation can be
relatively homogenous uniform. In order to avoid the sim-
ulation going to the negative region of u, we let u > q, if
u < q, u = q, according to the method of references [33,
34]. The simulations have been done as follows: we ex-
cite 3 elements at the left boundary in the our systems
under sub-excitable state in the one-dimensional space,
which serves as the wave source. The leapfrog method for
the advection terms; an implicit method for the diffusion
terms; and a simple explicit Euler method for the reac-
tion terms. Letting Un

j ≈ u(xj , tn) and V n
j ≈ v(xj , tn),

where xj+1 − xj = ∆x and tn+1 − tn = ∆t, results in the
following discretised system:

Un+1
j − Un

j

∆t
=

1
ε
f(Un

j , V n
j )+Du

[
Un+1

j+1 − 2Un+1
j + Un+1

j−1

(∆x)2

]

+ (Dsξ(t) + E(t))
[
Un

j+1 − Un
j−1

2∆x

]
, (4)

V n+1
j − V n

j

∆t
= g(Un

j , V n
j ) + Dv

[
V n+1

j+1 − 2V n+1
j + V n+1

j−1

(∆x)2

]

+ (Dsξ(t) + E(t))
[
V n

j+1 − V n
j−1

2∆x

]
, (5)
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Table 1. Traveling wave propagation under different F and Tin with noise intensity Ds = 0; symbol −1 indicates the system
sends out only one wave; symbol − indicates the system sends out traveling waves periodically but the waves disappear quickly;
symbol + indicates the system sends out traveling waves periodically and the waves can propagate persistently.

Tin < 2.0 Tin = 2.0 Tin = 3.0 Tin = 4.3 Tin = 5.0 Tin = 6.0 Tin > 6.0
F < 10.0 −1 −1 −1 − − − −
F = 10.0 −1 −1 −1 −1 + − −
F = 20.0 −1 −1 −1 + + − −
F = 30.0 −1 −1 + + + − −
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Fig. 1. (Color online) The phase diagram of ε versus f .

where Ds, F , and Tin are the control parameters. Note that
here the noise term ξ(t) is Gaussian and white. This is a
very reasonable assumption for internal noise, which rep-
resents many irrelevant degrees of freedom evolving over
very short temporal and spatial scales. It has a probability
density function with a normal distribution (also known
as Gaussian distribution). In other words, the values that
the noise can take on are Gaussian distributed.

3 Result

Extensive testing is performed through numerical simula-
tions of the described model (3). The qualitative results
are shown this section.

3.1 Sub-excitation and reversal phenomena

q, ε and f are parameters related to the BZ kinetics, de-
termining the sub-excitation of the system. q = 0.002 [35].
First we simulate the dynamical system (3) without noise
and periodic force to confirm the sub-excitable region. The
result is shown in Figure 1. In region (A) no traveling
waves are produced in the system; in region (B) traveling
waves are sent out and propagate in the system; region
(C) is not included in the excitable region. In the area be-
tween region (A) and (B), traveling waves are sent out but

die away gradually, which is the so-called sub-excitable re-
gion, corresponding to the blue line in Figure 1. Here we
set ε = 0.1 and f = 2.435 to fix our system into in a
sub-excitable region. When the parameters ε and f are
deeply in the sub-excitable domain, the same results are
observed by the numerical experiments, such as, ε = 0.025,
f = 2.435 and ε = 0.025, f = 4.0.

It turns out that the influence of noise is rather im-
portant in the sub-excitable media. There is an extreme
case for the system (3), that is, when the intensity of noise
equals 0, i.e. Ds = 0, and only the periodic force is present.
The different types of wave propagation are summarized
in the Table 1. Table 1 reveals that there exists critical
input period T ∗

in for each intensity of periodic force F
(F > 10.0), so that the system creates traveling waves pe-
riodically and waves propagate persistently. If F < 10.0,
the system can only send out one wave, and there is no
critical input period T ∗

in; The system sends out travel-
ing waves periodically but the waves disappear quickly
when Tin > T ∗

in (see Movie-1 for this case, where Ds = 0,
Tin = 8.0, and F = 10.0); when F = 10.0, T ∗

in = 5.0;
F = 20.0, T ∗

in = 4.0, 5.0; F = 30.0, T ∗
in = 3.0, 4.0, 5.0.

We next turn on the noise and periodic forces in sys-
tem (3) and investigate their effects when the intensity of
noise takes different values. Figure 2 shows that traveling
waves propagate with different noise and periodic forces.
The abscissa is the spatial location and the ordinate is the
evolution of time. The white part indicates wave crests.
As shown in Figure 2A, if only noise is present, travel-
ing waves are produced irregularly but they can prop-
agate stably [see Movie-2 ]. If periodic force and noise
are both present, travelling waves are produced period-
ically and reversal phenomena appear, however traveling
waves die out quickly when the intensity of noise is small
[see Movie-3 ]. The travelling waves are produced period-
ically and they propagate stably, and reversal phenom-
ena also appear when the intensity of noise is increased
[see Movie-4 ], as shown in Figure 2C. In Figure 3, we
show the phase diagram for reversal phenomena with re-
spect to the Ds–F parameter space, in which the reversal
travelling waves die out quickly within region I but prop-
agate persistently within region II. One can see that the
reversal waves sensitively depend on the intensity of peri-
odic forces and the noise intensities for the fixing Tin. For
example (see Fig. 3), the emergence of reversal waves is a
sensitive relationship before and after the certain critical
value. For large F , the curve sharply decreases, otherwise
it decreased slowly. So we can conclude from Figures 2
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Fig. 2. (Color online) The spatiotemporal plot of the vari-
able u for the system (3), where the ordinate is time evolu-
tion and the abscissa represents the spatial location. The white
part indicates wave front. (A) Only noise present, Ds = 14.0,
and F = 0 (see Movie-2, additional movies available from the
Journal Website); (B) both noise and periodic forcing present,
Ds = 10.0, F = 10.0, and Tin = 8.0 (see Movie-3, additional
movies available from the Journal Website); (C) both noise and
periodic forcing present, Ds = 14.0, F = 10.0, and Tin = 8.0
(see Movie-4, additional movies available from Journal Web-
site).

and 3, that the stabilization of traveling waves are due to
noise, but the periodicity owe to the function of periodic
force. Periodical and stable traveling waves, as well as re-
versal phenomena, are produced in sub-excitable systems
driven by noise and periodic force.

To characterize the relation between the periodic force
and reversal phenomena, we give some qualitative ex-
planations. Figure 4 shows the relationship between the
propagation of traveling waves with the periodic force
E(t) = F sin( 2π

Tin
t). The left window of Figure 4 is the

periodic force whose abscissa is E(t) and the right win-
dow represents the spatiotemporal plot of variable u whose
abscissa is the spatial location. The left and right window
share the same ordinate which is time. From Figure 4 we
can easily observe that corresponding to each input pe-
riod the system sends out a traveling wave, which is 1:1
frequency locking. The dotted line in the left window of
Figure 4 separates out the positive and negative parts of
the periodic force. We observe that if the periodic force
is negative, traveling waves propagate forward, whereas if
the periodic force is positive, traveling waves propagate
backward in the opposite direction. Thus reversal phe-
nomena appear.

For further investigation, we test several different
kinds of periodic force for system (3). They are E�(t) =
(−1)�

2t
Tin

�
F (the rectangle periodic force, here �n� denotes

the integer of n), E−(t) = −|F sin( 2π
Tin

t)| and E+(t) =
|F sin( 2π

Tin
t)|. When the periodic forcing is E�(t), travelling
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Fig. 3. (Color online) Phase diagram showing the reversal
phenomena with respect to Ds–F parameter space. The pa-
rameters are the same as Figure 2, but Tin = 8.0. The reversal
waves will die out quickly within region I and propagate per-
sistently within region II. Note the log scale for Tin. (�, the
critical values from simulation results.)
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Fig. 4. (Color online) The propagation of traveling waves with
periodic force E(t) = F sin( 2π

Tin
t). The ordinate is time evolu-

tion. For the left window the abscissa represents E(t) and for
the right the abscissa is space location. The left and right win-
dows share the same ordinate which is time. The parameters
are Ds = 14.0, F = 10.0, and Tin = 8.0.

waves are produced periodically and they propagate sta-
bly, and reversal phenomena appear (resembling Fig. 2C).
When the periodic force is E−(t) or E+(t), there are only
foundations formed but no travelling waves are sent out,
as shown in Figure 5. So the reversal phenomenon is due
to the alternation of the positive and negative values of
the periodic force. If each value of the periodic force was
positive (or negative), no travelling waves will be sent out
and of course no reversal phenomena will appear.
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Fig. 5. (Color online) The propagation of travelling waves with
periodic forcing E(t) = E−(t) (or E(t) = E+(t)). The ordinate
is time evolution. For the left window the abscissa represents
E(t) and for the right the abscissa is space location. The left
and right windows share the same ordinate which is time. The
parameters are Ds = 14.0, F = 10.0, and Tin = 8.0.

3.2 The output period and the three velocities

In this section we focus on the effect of the periodic force
E(t) = F sin( 2π

Tin
t) on the propagation of travelling waves.

Here, the noise intensity Ds is fixed at 14.0. Furthermore,
we define several quantities of the traveling waves. The
output period Tout is defined as follows: Ti is the time in-
terval between the ith wave and the i+1th wave. m waves
are taken into account and the average value of them is

Tout, where Tout =
m∑

i=1

Ti/(m − 1). The three velocities

(the normal, the positive and the negative) of the trav-
eling waves are defined as follows: when traveling waves
propagate forward, there is a mean propagation velocity
which is the positive velocity denoted by V+. The mean
velocity of the backward propagating waves is likewise de-
noted by V−. In addition, V is defined here as the average
velocity of the whole propagation of traveling wave. The
output period Tout, the normal velocity V , the positive
velocity V+ and the negative velocity V− are shown in
Figure 6. The slopes of the red, blue and yellow lines in
Figure 6 are 1/V , 1/V+ and 1/V−, respectively.

Based on these definition, we now focus our simula-
tions on the relationship between periodic force and the
properties of travelling waves. The results are shown in
Figure 7. Above all we interpret how the periodic force
E(t) affects the output period Tout. First, we fix F = 10.0
(the intensity of the periodic force) and study how Tout

changes with Tin (the input period),as shown in Figure 7a.
One observes that the output period increases linearly
with the input period. Moreover, the output period is the
same as the input period (the slope equals to 1). Second,
we fix Tin = 8.0 and study the relation between Tout and
F , as shown in Figure 7b, from which one observes that
the output period is a constant and independent of the

1/V

1/V+

1/V−

Tout

Fig. 6. (Color online) The sketch map of Tout, V , V+, and V−
with Ds = 14.0, F = 10.0, Tin = 8.0.

Fig. 7. (Color online) The effect of periodic force on the prop-
erty of traveling waves, Ds = 14.0. (a) The plot of the output
period with respect to the input period, F = 10.0. (b) The plot
of the output period with respect to the intensity of periodic
force, Tin = 8.0. (c) The plot of the three velocities of the trav-
eling waves with respect to the input period, and F = 10.0.
(d) The plot of the three velocities of the traveling waves with
respect to the intensity of periodic force, Tin = 8.0.

intensity of the periodic forcing. We can therefore draw a
conclusion that the output period is the same as the input
period and is independent of the intensity of the periodic
force, under a fixed noise intensity.

Next we investigate the influence of the periodic force
E(t) on the three velocities of the travelling waves (the
normal V , the positive V+ and the negative V−). First
we fix the intensity of the period forcing F = 10.0 and
see the changes of V , V+, and V− with the input period
Tin, respectively. The results are shown in Figure 7c, from
which we observe that the normal, positive and negative
velocities approximate constant values, respectively, inde-
pendent of the input period. Then we fix Tin = 8.0 and
study the changes of V , V+ and V− with F (see Fig. 7d),
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which shows that the normal velocity is constant indepen-
dent of the intensity of the periodic forcing; the positive
velocity increases with the intensity of periodic force, while
the negative velocity decreases with the intensity of peri-
odic force. So we can conclude that the normal velocity is
independent of the periodic force; the positive and nega-
tive velocities have the same trend with the intensity of
periodic forces and do not depend on the input period.

It is natural to presume from the above results that the
three velocities are interrelated. Through examination of
the data, we obtain the relationship between the normal,
positive and negative velocities, as follows

2V = V+ + V−, (6)

that is,
V ∗ = V+ − V = V − V−. (7)

So the positive velocity is the normal velocity plus V ∗, and
the negative velocity is the normal velocity minus V ∗.

4 conclusion and discussion

In conclusion, noise and periodic force play a very impor-
tant role on the production, propagation, and stability of
the traveling waves in sub-excitable systems. Noise can
induce traveling waves to propagate stably. It can also
support wave propagation in sub-excitable [15,17,20] me-
dia due to a noise-induced transition [21,22,36]. In these
studies, the media are static, and transport is governed
by diffusion. In many systems, the media are not static,
but subject to a motion, for example, when stirred by a
flow, or by the oscillatory electric field (with period). This
occurs especially in chemical reactions in a fluid environ-
ment. In this case, usually diffusive transport dominates
only at small spatial scales while mixing due to the flow in
much faster at large scale. In this paper, we investigate the
sub-excitable system using a simplified Oregonator model,
and the propagation of traveling waves in the presence of
both noise and periodic force. Depending on noise and the
periodic forcing we have observed different types of wave
propagation (or its disappearance). Moreover, the rever-
sal phenomena is observed in this system based on the
numerical experiments in one-dimensional space. We give
qualitative explanations to how reversal phenomena ap-
pear, which turns out to be due to the periodic force. The
output period and three velocities (the normal, positive
and negative) of the traveling waves are defined and their
relationship with the periodic forcing are also studied in
sub-excitable system with a fixed intensity of noise.

The periodic force can make periodically produced
traveling waves and reversal phenomena appear. The re-
versal phenomenon results from the alternation of the pos-
itive and negative values of the periodic forcing and noise.
For the special case, we show the phase diagram for the re-
versal phenomena with respect to Ds–F parameter space,
from which one can see that the reversal waves sensitively
depend on the intensity of periodic forces and the noise
intensities for the fixing Tin. Finally, we examine the effect

of periodic force on the sub-excitable system with a fixed
noise intensity Ds = 14.0. Under such a condition, the in-
fluence of periodic forces on the three different kinds of ve-
locities are also determined. The relation among the three
velocities is 2V = V+ + V−. In reference [20], the authors
studied sub-excitable medium of a Belousov-Zhabotinsky
(BZ) reaction subjected to Gaussian white noise in exper-
iments. They observed that at an optimal level of noise
the wave sources of excited traveling waves become syn-
chronous, as though there exists a long distance spatial
correlation.

We thank Professor Qi Ouyang for enlightening discussion
about this paper. We are grateful for the constructive sug-
gestions of the two anonymous referees and Professor Fabio
Marchesoni from the Università di Camerino for pointing out
some relevant references.
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